NEWS
sagemaker.mlcore 0.3.0
Architecture Change:
- moved all Amazon machine learning framework classes to
sagemaker.mlframework
- moved clarify classes and method to
sagemaker.common
** NOTE:** this changes reduce package overall size from 5Mb
to 3.7Mb
align to CRAN
package size limitations.
sagemaker.mlcore 0.2.4
Bug Fix:
- Class
HyperparameterTuner
correctly validates hyper parameters
- Correctly pass static hyperparameters
Feature:
- Class
HyperparameterTuner
create
method is now callable at R6ClassGenerator
level. To help mimic python equivalent.
sagemaker.mlcore 0.2.3
Bug Fix:
- correctly parse parameters class
Minor:
- Add
.module
field to estimator classes to minic python cls.__module__
sagemaker.mlcore 0.2.2
Bug Fix:
- allow
container_log_level
to pass any string instead of restricting to logging levels.
Minor:
- explicitly reference
sagemaker.core
functions to help with mock functionality
sagemaker.mlcore 0.2.1
Bug Fix:
- Ensure deserializer classes correctly parse raw vectors as expected.
sagemaker.mlcore 0.2.0
Feature:
- Add SparseMatrixSerializer serialize class
- Allow all serializer classes read from data in from file.
- LibSVMSerializer class now uses readsparse package in the backend
Bug Fix:
- CSVSerializer correctly serialize data
sagemaker.mlcore 0.1.0
Initial release to r-universe