Package: sagemaker.debugger (via r-universe)

July 24, 2024
Type Package

Title R6sagemaker debugger for sagemaker operations

Version 0.1.0

Description "R6sagemaker® debugger for sagemaker operations.
Imports lgr, R6, data.table, jsonlite, methods

License Apache License (>= 2.0)

Encoding UTF-8

RoxygenNote 7.1.2

Collate 'r_utils.R' 'actions_utils.R' 'actions_actions.R'
'debugger_rules_utils.R' 'debugger_rules_builtin_rules.R'
'debugger_rules_collections.R' 'debugger_rules_constants.R'
'debugger_rules_ruleGroups.R' 'profiler_rules_utils.R'
'profiler_rules_rules.R' 'zzz.R'

Suggests testthat (>=3.0.0)

Config/testthat/edition 3

Repository https://dyfanjones.r-universe.dev

RemoteUrl https://github.com/DyfanJones/sagemaker-r-debugger
RemoteRef HEAD

RemoteSha 2f10937153bf4cf70be72d1928ba7eb0ad4377ed

Contents
sagemaker.debugger-package 2
ACHiON e e e e 2
ActionliSt e e 3
BatchSize e 4
CPUBottleneck e e 5
Dataloader e 6
Email e 7
GPUMemorylncrease o L 8
IOBottleneck e e 9

2 Action
LoadBalancing e e e 10
LowGPUUtilization e 11
MaxInitializationTime e e e 12
OverallSystemUsage 13
ProfilerReport 13
rule_config L e 14
SMS . 15
StepOutlier 16
StopTraining 17

Index 19

sagemaker .debugger-package
r6 sagemaker: this is just a placeholder
Description
‘R6sagemaker debugger for sagemaker operations.
Author(s)
Maintainer: Dyfan Jones <dyfan.r. jones@gmail.com>
Other contributors:
* Amazon.com, Inc. [copyright holder]
Action Debugger Action Class
Description
Base class for action, which is to be invoked when a rule fires. Offers ‘serialize* function to convert
action parameters to a string dictionary.
Methods

Public methods:

e Action$new()

* Action$serialize()
e Action$format()

e Action$clone()

Method new(): This class is not meant to be initialized directly. Accepts dictionary of action
parameters and drops keys whose values are ‘None".

ActionList

Usage:
Action$new(...)

Arguments:
. : Dictionary of action parameters.
Method serialize(): Serialize the action parameters as a string dictionary.

Usage:
Action$serialize()

Returns: Action parameters serialized as a string dictionary.

Method format(): format class
Usage:
Action$format()
Method clone(): The objects of this class are cloneable with this method.
Usage:
Action$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ActionList Debugger ActionList Action Class

Description

Higher level object to maintain a list of actions to be invoked when a rule is fired.

Methods

Public methods:
e ActionList$new()
e ActionList$update_training_job_prefix_if_not_specified()
* ActionList$serialize()
e ActionList$format()
e ActionList$clone()

Method new(): Offers higher level ‘serialize‘ function to handle serialization of actions as a
string list of dictionaries.

Usage:

ActionList$new(...)

Arguments:

. : List of actions.

4 BatchSize

Method update_training_job_prefix_if_not_specified(): For any StopTraining actions
in the action list, update the trainingjob prefix to be the training job name if the user has not
already specified a custom training job prefix. This is meant to be called via the sagemaker SDK
when ‘estimator.fit* is called by the user. Validation is purposely excluded here so that any failures
in validation of the training job name are intentionally caught in the sagemaker SDK and not here.

Usage:
ActionList$update_training_job_prefix_if_not_specified(training_job_name)

Arguments:
training_job_name : Name of the training job, passed in when ‘estimator.fit* is called.

Method serialize(): Serialize the action parameters as a string dictionary.

Usage:
ActionList$serialize()

Returns: Action parameters serialized as a string dictionary.

Method format(): format class

Usage:
ActionList$format ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ActionList$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

BatchSize Debugger BatchSize class

Description

This rule helps to detect if GPU is underulitized because of the batch size being too small. To detect
this the rule analyzes the average GPU memory footprint, CPU and GPU utilization. If utilization
on CPU, GPU and memory footprint is on average low , it may indicate that user can either run
on a smaller instance type or that batch size could be increased. This analysis does not work for
frameworks that heavily over-allocate memory. Increasing batch size could potentially lead to a
processing/dataloading bottleneck, because more data needs to be pre-processed in each iteration.

Super class

sagemaker .debugger: :ProfilerRuleBase -> BatchSize

CPUBottleneck 5

Methods

Public methods:

e BatchSize$new()
* BatchSize$clone()

Method new(): Initialize BatchSize class

Usage:

BatchSize$new(
cpu_threshold_p95 = 70,
gpu_threshold_p95 = 70,
gpu_memory_threshold_p95 = 70,
patience = 1000,
window = 500,
scan_interval_us = 60 * 1000 * 1000

)

Arguments:

cpu_threshold_p95 (numeric): defines the threshold for 95th quantile of CPU utilization.Default
is 70%.

gpu_threshold_p95 (numeric): defines the threshold for 95th quantile of GPU utilization.Default
is 70%.

gpu_memory_threshold_p95 (numeric): defines the threshold for 95th quantile of GPU mem-
ory utilization.Default is 70%.

patience (numeric): defines how many data points to capture before Rule runs the first evlua-
tion. Default 100

window (numeric): window size for computing quantiles.

scan_interval_us (numeric): interval with which timeline files are scanned. Default is 60000000
us.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BatchSize$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

CPUBottleneck Debugger CPUBottleneck class

Description

This rule helps to detect if GPU is underutilized due to CPU bottlenecks. Rule returns True if
number of CPU bottlenecks exceeds a predefined threshold.

6 Dataloader

Super class

sagemaker.debugger: :ProfilerRuleBase -> CPUBottleneck

Methods

Public methods:

e CPUBottleneck$new()
e CPUBottleneck$clone()

Method new(): Initialize CPUBottleneck class

Usage:
CPUBottleneck$new(
threshold = 50,
gpu_threshold = 10,
cpu_threshold = 90,
patience = 1000,
scan_interval_us = 60 * 1000 * 1000

)
Arguments:

threshold : defines the threshold beyond which Rule should return True. Default is 50 percent.
So if there is a bottleneck more than 50% of the time during the training Rule will return
True.

gpu_threshold : threshold that defines when GPU is considered being under-utilized. Default
is 10%
cpu_threshold : threshold that defines high CPU utilization. Default is above 90%

patience : How many values to record before checking for CPU bottlenecks. During training
initialization, GPU is likely at O percent, so Rule should not check for under utilization
immediately. Default 1000.

scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.
Usage:
CPUBottleneck$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Dataloader Debugger Dataloader class

Description

This rule helps to detect how many dataloader processes are running in parallel and whether the
total number is equal the number of available CPU cores.

Email 7

Super class

sagemaker .debugger: :ProfilerRuleBase -> Dataloader

Methods
Public methods:

* Dataloader$new()
e Dataloader$clone()

Method new(): Initialize Dataloader class

Usage:

Dataloader$new(
min_threshold = 70,
max_threshold = 200,

scan_interval_us = 6e+07

)

Arguments:

min_threshold : how many cores should be at least used by dataloading processes. Default
70%

max_threshold : how many cores should be at maximum used by dataloading processes. De-
fault 200%

scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Dataloader$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Email Debugger Email Action class

Description

Action for sending an email to the provided email address when the rule is fired. Note that a policy
must be created in the AWS account to allow the sagemaker role to send an email to the user.

Super class

sagemaker .debugger: :Action ->Email

GPUMemorylIncrease

Methods
Public methods:

* Email$new()
* Email$clone()

Method new(): Initialize Email action class.

Usage:
Email$new(email_address)

Arguments:
email_address : Email address to send the email notification to.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Email$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

GPUMemoryIncrease Debugger GPUMemorylncrease class

Description
This rule helps to detect large increase in memory usage on GPUs. The rule computes the moving
average of continous datapoints and compares it against the moving average of previous iteration.

Super class
sagemaker.debugger: :ProfilerRuleBase -> GPUMemoryIncrease

Methods

Public methods:
* GPUMemoryIncrease$new()
¢ GPUMemoryIncrease$clone()

Method new(): Initialize GPUMemorylncrease class

Usage:

GPUMemoryIncrease$new(
increase = 5,
patience = 1000,

window = 10,

scan_interval_us = 60 *x 1000 * 1000

IOBottleneck 9

Arguments:

increase : defines the threshold for absolute memory increase.Default is 5%. So if moving
average increase from 5% to 6%, the rule will fire.

patience : defines how many continous datapoints to capture before Rule runs the first evlua-
tion. Default is 1000

window : window size for computing moving average of continous datapoints

scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GPUMemoryIncrease$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

I0Bottleneck Debugger IOBottleneck class

Description

This rule helps to detect if GPU is underutilized due to 10 bottlenecks. Rule returns True if number
of 10 bottlenecks exceeds a predefined threshold.

Super class

sagemaker .debugger: :ProfilerRuleBase -> I0Bottleneck

Methods

Public methods:

e I0Bottleneck$new()
e I0Bottleneck$clone()

Method new(): Initialize IOBottleneck class

Usage:
I0Bottleneck$new(
threshold = 50,
gpu_threshold = 10,
io_threshold = 50,
patience = 1000,
scan_interval_us = 60 * 1000 * 1000

)

Arguments:

threshold : defines the threshold when Rule should return True. Default is 50 percent. So if
there is a bottleneck more than 50% of the time during the training Rule will return True.

10 LoadBalancing

gpu_threshold : threshold that defines when GPU is considered being under-utilized. Default
is 70%
io_threshold : threshold that defines high IO wait time. Default is above 50%

patience : How many values to record before checking for IO bottlenecks. During training
initilization, GPU is likely at O percent, so Rule should not check for underutilization im-
mediatly. Default 1000.

scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.
Usage:
IOBottleneck$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

LoadBalancing Debugger LoadBalancing class

Description

This rule helps to detect issues in workload balancing between multiple GPUs. It computes a his-
togram of utilization per GPU and measures the distance between those histograms. If the histogram
exceeds a pre-defined threshold then rule triggers.

Super class

sagemaker.debugger: :ProfilerRuleBase -> LoadBalancing

Methods
Public methods:

¢ LoadBalancing$new()
¢ LoadBalancing$clone()

Method new(): Initialize LoadBalancing class

Usage:
LoadBalancing$new(
threshold = 0.5,
patience = 1000,
scan_interval_us = 60 * 1000 * 1000

)

Arguments:

threshold : difference between 2 histograms 0.5

patience : how many values to record before checking for loadbalancing issues
scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

LowGPUUtilization 11

Method clone(): The objects of this class are cloneable with this method.
Usage:
LoadBalancing$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

LowGPUUtilization Debugger LowGPUUtilization class

Description

This rule helps to detect if GPU utilization is low or suffers from fluctuations. This is checked for
each single GPU on each worker node. Rule returns True if 95th quantile is below threshold_p95
which indicates under-utilization. Rule returns true if 95th quantile is above threshold_p95 and 5th
quantile is below threshold_p5 which indicates fluctuations.

Super class

sagemaker.debugger: :ProfilerRuleBase -> LowGPUUtilization

Methods

Public methods:

e LowGPUUtilization$new()
e LowGPUUtilization$clone()

Method new(): Initialize LowGPUUtilization class

Usage:
LowGPUUtilization$new(
threshold_p95 = 70,
threshold_p5 = 10,
window = 500,
patience = 1000,
scan_interval_us = 60 * 1000 * 1000

)

Arguments:

threshold_p95 : threshold for 95th quantile below which GPU is considered to be underuti-
lized. Default is 70 percent.

threshold_p5 : threshold for S5th quantile. Default is 10 percent.

window : number of past datapoints which are used to compute the quantiles.

patience : How many values to record before checking for underutilization/fluctuations. Dur-
ing training initilization, GPU is likely at O percent, so Rule should not check for underuti-
lization immediately. Default 1000.

scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

12 MaxlInitializationTime

Method clone(): The objects of this class are cloneable with this method.

Usage:
LowGPUUtilization$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

MaxInitializationTime Debugger MaxInitializationTime class

Description
This rule helps to detect if the training intialization is taking too much time. The rule waits until

first step is available.

Super class

sagemaker.debugger: :ProfilerRuleBase ->MaxInitializationTime

Methods
Public methods:

* MaxInitializationTime$new()
e MaxInitializationTime$clone()

Method new(): Initialize MaxInitializationTime class

Usage:
MaxInitializationTime$new(threshold = 20, scan_interval_us = 60 * 1000 *x 1000)

Arguments:
threshold : defines the threshold in minutes to wait for first step to become available. Default

is 20 minutes.
scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MaxInitializationTime$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OverallSystemUsage 13

OverallSystemUsage Debugger OverallSystemUsage class

Description

This rule measures overall system usage per worker node. The rule currently only aggregates values
per node and computes their percentiles. The rule does currently not take any threshold parameters
into account nor can it trigger. The reason behind that is that other rules already cover cases such
as under utilization and they do it at a more fine-grained level e.g. per GPU. We may change this in
the future.

Super class

sagemaker .debugger: :ProfilerRuleBase -> OverallSystemUsage

Methods

Public methods:
e OverallSystemUsage$new()
* OverallSystemUsage$clone()

Method new(): Initialize OverallSystemUsage class
Usage:
OverallSystemUsage$new(scan_interval_us = 60 * 1000 * 1000)
Arguments:
scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.
Usage:
OverallSystemUsage$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

ProfilerReport Debugger ProfilerReport class

Description

This rule will create a profiler report after invoking all of the rules. The parameters used in any of
these rules can be customized by following this naming scheme: <rule_name>_<parameter_name>
: value Validation is also done here to ensure that:

* The key names follow the above format

* rule_name corresponds to a valid rule name.

* parameter_name corresponds to a valid parameter of this rule.

* The parameter for this rule’s parameter is valid.

14 rule_config

Super class

sagemaker.debugger: :ProfilerRuleBase -> ProfilerReport

Methods

Public methods:

e ProfilerReport$new()
e ProfilerReport$clone()

Method new(): Initialize ProfilerReport class

Usage:
ProfilerReport$new(...)

Arguments:

. : Dictionary mapping rule + parameter name to value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProfilerReport$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

rule_config List of Debugger Built-in Rules

Description

Use the Debugger built-in rules provided by Amazon SageMaker Debugger and analyze tensors
emitted while training your models. The Debugger built-in rules monitor various common condi-
tions that are critical for the success of a training job. You can call the built-in rules using Amazon
SageMaker Python SDK or the low-level SageMaker API operations. Depending on deep learning
frameworks of your choice, there are four scopes of validity for the built-in rules as shown in the fol-
lowing table. https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.
html

Usage

vanishing_gradient ()
similar_across_runs()
weight_update_ratio()

all_zero()

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html

SMS 15

exploding_tensor()
unchanged_tensor()
loss_not_decreasing()
check_input_images()
dead_relu()

confusion()

tree_depth()
class_imbalance()

overfit()

tensor_variance()
overtraining()
poor_weight_initialization()
saturated_activation()
nlp_sequence_ratio()
stalled_training_rule()
feature_importance_overweight ()

create_xgboost_report()

Value

list to be used in Amazon SageMaker Debugger

SMS Debugger SMS Action Class

Description

Action for sending an SMS to the provided phone number when the rule is fired. Note that a policy
must be created in the AWS account to allow the sagemaker role to send an SMS to the user.

16 StepOutlier

Super class

sagemaker .debugger: :Action -> SMS

Methods

Public methods:
* SMS$new()

e SMS$clone()
Method new(): Initialize SMS action class

Usage:
SMS$new(phone_number)

Arguments:
phone_number : Valid phone number that follows the the E.164 format. See https://docs.
aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html for more info.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SMS$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

StepOutlier Debugger StepOutlier class

Description

This rule helps to detect outlier in step durations. Rule returns True if duration is larger than stddev
* standard deviation.

Super class

sagemaker.debugger: :ProfilerRuleBase -> StepQutlier

Methods

Public methods:

e StepOutlier$new()
e StepOutlier$clone()

Method new(): Initialize StepOutlier class

Usage:

https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html
https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html

StopTraining 17

StepOutlier$new(
stddev = 3,
mode = NULL,
n_outliers = 10,
scan_interval_us = 60 * 1000 * 1000
)
Arguments:
stddev : factor by which to multiply the standard deviation. Default is 3

mode : select mode under which steps have been saved and on which Rule should run on. Per
default rule will run on steps from EVAL and TRAIN phase.

n_outliers : How many outliers to ignore before rule returns True. Default 10.
scan_interval_us : interval with which timeline files are scanned. Default is 60000000 us.

Method clone(): The objects of this class are cloneable with this method.
Usage:
StepOutlier$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

StopTraining Debugger StopTraining Action class

Description

Action for stopping the training job when a rule is fired.

Super class

sagemaker.debugger: :Action -> StopTraining

Methods

Public methods:
e StopTraining$new()
e StopTraining$update_training_job_prefix_if_not_specified()
e StopTraining$clone()

Method new(): Note that a policy must be created in the AWS account to allow the sagemaker
role to stop the training job.

Usage:
StopTraining$new(training_job_prefix = NULL)
Arguments:

training_job_prefix : The prefix of the training job to stop if the rule is fired. This must
only refer to one active training job, otherwise no training job will be stopped.

18

StopTraining

Method update_training_job_prefix_if_not_specified(): Update the training job prefix
to be the training job name if the user has not already specified a custom training job prefix.
This is only meant to be called via the sagemaker SDK when ‘estimator.fit‘ is called by the user.
Validation is purposely excluded here so that any failures in validation of the training job name
are intentionally caught in the sagemaker SDK and not here.

Usage:
StopTraining$update_training_job_prefix_if_not_specified(training_job_name)

Arguments:
training_job_name : Name of the training job, passed in when ‘estimator.fit* is called.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StopTraining$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Index

Action, 2
ActionList, 3
all_zero (rule_config), 14

BatchSize, 4

check_input_images (rule_config), 14
class_imbalance (rule_config), 14
confusion (rule_config), 14
CPUBottleneck, 5

create_xgboost_report (rule_config), 14

Dataloader, 6
dead_relu (rule_config), 14

Email, 7
exploding_tensor (rule_config), 14

feature_importance_overweight
(rule_config), 14

GPUMemoryIncrease, 8
IOBottleneck, 9

LoadBalancing, 10
loss_not_decreasing (rule_config), 14
LowGPUUtilization, 11

MaxInitializationTime, 12
nlp_sequence_ratio (rule_config), 14

OverallSystemUsage, 13
overfit (rule_config), 14
overtraining (rule_config), 14

poor_weight_initialization
(rule_config), 14
ProfilerReport, 13

rule_config, 14

19

sagemaker .debugger
(sagemaker.debugger-package), 2
sagemaker .debugger-package, 2
sagemaker .debugger: :Action, 7, 16, 17
sagemaker .debugger: :ProfilerRuleBase,
4,6-14, 16
saturated_activation (rule_config), 14
similar_across_runs (rule_config), 14
SMS, 15
stalled_training_rule (rule_config), 14
StepOutlier, 16
StopTraining, 17

tensor_variance (rule_config), 14
tree_depth (rule_config), 14

unchanged_tensor (rule_config), 14
vanishing_gradient (rule_config), 14

weight_update_ratio (rule_config), 14

	sagemaker.debugger-package
	Action
	ActionList
	BatchSize
	CPUBottleneck
	Dataloader
	Email
	GPUMemoryIncrease
	IOBottleneck
	LoadBalancing
	LowGPUUtilization
	MaxInitializationTime
	OverallSystemUsage
	ProfilerReport
	rule_config
	SMS
	StepOutlier
	StopTraining
	Index

